铝罐厂家
免费服务热线

Free service

hotline

010-00000000
铝罐厂家
热门搜索:
行业资讯
当前位置:首页 > 行业资讯

通过LabVIEW图形化开发平台有效优化多核处理器环境下信号处理性能

发布时间:2020-07-21 18:29:42 阅读: 来源:铝罐厂家

摩尔定律问世40余年来,人们业已看到半导体芯片制造工艺水平以一种令人目眩的速度在提高,Intel微处理器的最高主频甚至超过了4G。虽然主频的提升一定程度上提高了程序运行效率,但越来越多的问题也随之出现,耗电、散热都成为阻碍设计的瓶颈所在,芯片成本也相应提高。当单独依靠提高主频已不能实现性能的高效率时,双核乃至多核成为了提高性能的唯一出路。随着AMD率先打破摩尔定律、终结频率游戏后,Intel和AMD都开始逐步推出了基于双核、四核甚至八核的处理器,工程师们逐渐投入到基于多核处理器的新型应用开发中去时,大家开始发现,借助这些新的多核处理器,并在应用开发中利用并行编程技术,可以实现最佳的性能和最大的吞吐量,大大提高应用程序的运行效率。 然而,业界专家们也同时认识到,对于实际的编程应用,多核处理器的并行编程却是一个巨大的挑战。比尔盖茨是这样论述的: “要想充分利用并行工作的处理器的威力,…软件必须能够处理并发性问题。但正如任何一位编写过多线程代码的开发者告诉你的那样,这是编程领域最艰巨的任务之一。” 比如用C++写一个多线程的程序,程序员必须要非常熟悉 C++,了解如何将C++程序分成多个线程和并在各个线程间进行任务调度,此外还要了解 Windows 多线程的机制,熟悉 Windows API 的调用方法和MFC 的架构等等。在 C++ 上调试多线程程序,更是被很多程序员视为噩梦。 所以,对于测试测量行业的工程师来说,在传统开发环境下要想获得多核下的效率提升意味着大量而复杂的多线程编程任务,而使得工程师脱离了自动化测试及其信号处理任务本身,于是,要想在当前的多核机器上充分利用其架构和并行运算的优势,反而成为工程师们“不可能”完成的任务。 LabVIEW降低并行编程的复杂性,快速开发并行构架的信号处理应用 幸运的是,NI LabVIEW图形化开发平台为我们提供了一个理想的多核处理器编程环境。作为一种并行结构的编程语言,LabVIEW能将多个并列的程序分支自动分配成多个线程并分派到各个处理核上,让一些计算量较大的数学运算或信号处理应用得以提高运行效率,并获取最佳性能。 我们以自动化测试中最常见的多通道信号处理分析为例。由于多通道中的频率分析是一项占用处理器资源较多的操作,如果能够让程序并行地将每个通道的信号处理任务分配至多个处理器核,对于提高程序执行速度来说,就显得尤为重要。而目前,从LabVIEW编程人员的角度来看,要想获得这一原本“不可能”的技术优势,唯一需要改变的只是算法结构的细微调整,而并不需要复杂且耗时耗力的代码重建工作。 以双通道采样为例,我们需要分别对高速数字化仪的两个通道上的数据进行快速傅立叶变换(FFT)。假设我们采用的高速数字化仪的两个通道均以100 MS/s采样率采集信号并实时分析。首先,我们来看LabVIEW中对于这一操作的传统顺序编程模型。 图1. 利用顺序执行的LabVIEW代码

和其他文本编程语言一样,处理多通道信号的传统方法是将各个通道信号按顺序读入并逐通道的进行分析,上面基于LabVIEW的顺序编程模型很好的说明了这点,0、1两通道的数据被按顺序读入后,整合为一路数组,并由一个FFT函数进行信号分析并输出。虽然顺序结构能够顺利地在多核机器上运行,但确不能使得CPU负担得到有效的分摊,因为即使在双核的机器上, FFT程序也只能在一个CPU上被执行,而此时另一个CPU却被闲置了。 实际上,两个通道的FFT运算相互独立,如果程序能够将两个FFT自动分配到一台双核机器上的的两个CPU上,那么理论上程序的运行效率将提高一倍。在LabVIEW的图形化编程平台上,情况正是如此,我们可以通过并行化处理这两个通道来真正提高算法性能。图2表示了一种采用并行结构的LabVIEW代码,从图形化编程的角度来看,仅仅是增加了一路并行的FFT函数而已。 图2. 利用并行执行的LabVIEW代码

由于数据量越大,信号处理运算在工程应用中所占的处理器时间就越长,所以通过简单的程序改动将原来的信号处理程序并行化,可以改善程序性能,减少了总的执行时间。 图3. 对于大于1M采样(100 Hz精度带宽)的数据块,并行方式实现了80%或更高的性能增长。 红外热像仪相关文章:红外热像仪原理

25 Markdown 甘特图

Android 文本输入框 EditText

03 Shell 变量

12 Python 数据类型详细篇:元组